Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Chip ; 23(20): 4400-4412, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37740394

RESUMO

The recent COVID-19 outbreak highlighted the need for lab-on-chip diagnostic technology fit for real-life deployment in the field. Existing bottlenecks in multistep analytical microsystem integration and upscalable, standardized fabrication techniques delayed the large-scale deployment of lab-on-chip solutions during the outbreak, throughout a global diagnostic test shortage. This study presents a technology that has the potential to address these issues by redeploying and repurposing the ubiquitous printed circuit board (PCB) technology and manufacturing infrastructure. We demonstrate the first commercially manufactured, miniaturised lab-on-PCB device for loop-mediated isothermal amplification (LAMP) genetic detection of SARS-CoV-2. The system incorporates a mass-manufactured, continuous-flow PCB chip with ultra-low cost fluorescent detection circuitry, rendering it the only continuous-flow µLAMP platform with off-the-shelf optical detection components. Ultrafast, SARS-CoV-2 RNA amplification in wastewater samples was demonstrated within 2 min analysis, at concentrations as low as 17 gc µL-1. We further demonstrate our device operation by detecting SARS-CoV-2 in 20 human nasopharyngeal swab samples, without the need for any RNA extraction or purification. This renders the presented miniaturised nucleic-acid amplification-based diagnostic test the fastest reported SARS-CoV-2 genetic detection platform, in a practical implementation suitable for deployment in the field. This technology can be readily extended to the detection of alternative pathogens or genetic targets for a very broad range of applications and matrices. LoCKAmp lab-on-PCB chips are currently mass-manufactured in a commercial, ISO-compliant PCB factory, at a small-scale production cost of £2.50 per chip. Thus, with this work, we demonstrate a high technology-readiness-level lab-on-chip-based genetic detection system, successfully benchmarked against standard analytical techniques both for wastewater and nasopharyngeal swab SARS-CoV-2 detection.

3.
J Mol Biol ; 434(24): 167873, 2022 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-36328231

RESUMO

We have investigated whether the presence of the origin of assembly sequence (OAS) of tobacco mosaic virus (TMV) is necessary for the specific encapsidation of replicating viral RNA. To this end TMV coat protein was expressed from replicating RNA constructs with or without the OAS in planta. In both cases the replicating RNA was specifically encapsidated to give nucleoprotein nanorods, though the yield in the absence of the OAS was reduced to about 60% of that in its presence. Moreover, the nanorods generated in the absence of the OAS were more heterogeneous in length and contained frequent structural discontinuities. These results strongly suggest that the function of the OAS is to provide a unique site for the initiation of viral assembly, leading to a one-start helix, rather than the selection of virus RNA for packaging.


Assuntos
RNA Viral , Vírus do Mosaico do Tabaco , Montagem de Vírus , RNA Viral/metabolismo , Vírus do Mosaico do Tabaco/genética , Vírus do Mosaico do Tabaco/fisiologia , Montagem de Vírus/genética , Replicação do RNA , Sequência de Bases , Nanotubos
4.
Front Bioeng Biotechnol ; 10: 877361, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35557863

RESUMO

The production of designer-length tobacco mosaic virus (TMV) nanorods in plants has been problematic in terms of yields, particularly when modified coat protein subunits are incorporated. To address this, we have investigated the use of a replicating potato virus X-based vector (pEff) to express defined length nanorods containing either wild-type or modified versions of the TMV coat protein. This system has previously been shown to be an efficient method for producing virus-like particles of filamentous plant viruses. The length of the resulting TMV nanorods can be controlled by varying the length of the encapsidated RNA. Nanorod lengths were analyzed with a custom-written Python computer script coupled with the Nanorod UI user interface script, thereby generating histograms of particle length. In addition, nanorod variants were produced by incorporating coat protein subunits presenting metal-binding peptides at their C-termini. We demonstrate the utility of this approach by generating nanorods that bind colloidal gold nanoparticles.

5.
Methods Mol Biol ; 2480: 103-111, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35616860

RESUMO

Recent discoveries in the dynamics of genome replication and packaging in the plant virus Cowpea mosaic virus (CPMV) has led to the development of a novel method for specifically packaging an RNA molecule of choice into virus-like particles (VLPs) of CPMV. Thanks to modern gene synthesis and molecular cloning methods, the DNA sequence corresponding to an RNA sequence of interest can be cloned into a suitable expression plasmid for transient expression in plants. We describe here a method for ensuring that this RNA sequence will be packaged within VLPs of CPMV in plant cells by replication-dependent RNA packaging. This requires co-expression of the CPMV replication machinery alongside the CPMV coat protein precursor. These components are co-expressed in the leaves of the Nicotiana benthamiana plant and this co-expression results in the production of large quantities of VLPs that contain the RNA sequence of choice. These VLPs are easy to extract and purify from the plant tissue, and are stable for months in refrigerated conditions. These VLPs can then be used for a variety of different applications, such as RNA delivery or control reagents in RT-qPCR.


Assuntos
Comovirus , Vírus de Plantas , Comovirus/genética , Comovirus/metabolismo , Vírus de Plantas/genética , Plasmídeos , RNA/metabolismo , /genética
6.
J Virol Methods ; 300: 114372, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34838537

RESUMO

The current gold standard technique for SARS-CoV-2 diagnostics is hydrolysis probe-based RT-qPCR. Reliable testing requires reliable control reagents to monitor the efficiency of RNA extraction, reverse transcription and PCR amplification. Here we describe a custom RNA packaging system from the plant virus cowpea mosaic virus to produce virus-like particles that encapsidate specifically designed portions of the genome of SARS-CoV-2, the causative agent of COVID-19. These encapsidated mimics are highly stable particles which can be used either to spike patient swab samples for use as an in-tube extraction and reaction positive control in multiplex RT-qPCR, or alone as a side-by-side mock-positive control reagent. The selection of sequences in the packaged pseudogenomes ensures that these mimics are compatible with the most commonly used primer/probe combinations for SARS-CoV-2 diagnostics (including German Berlin Charité Hospital, American CDC, and Chinese CDC protocols). The plant transient expression system used to produce these encapsidated mimics is inherently low-cost, and sufficiently high-yielding that a single laboratory-scale preparation can provide enough positive control reagent for millions of tests.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Indicadores e Reagentes , RNA Viral/genética , Sensibilidade e Especificidade
7.
Vaccines (Basel) ; 9(7)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34358196

RESUMO

The past 30 years have seen the growth of plant molecular farming as an approach to the production of recombinant proteins for pharmaceutical and biotechnological uses. Much of this effort has focused on producing vaccine candidates against viral diseases, including those caused by enveloped viruses. These represent a particular challenge given the difficulties associated with expressing and purifying membrane-bound proteins and achieving correct assembly. Despite this, there have been notable successes both from a biochemical and a clinical perspective, with a number of clinical trials showing great promise. This review will explore the history and current status of plant-produced vaccine candidates against enveloped viruses to date, with a particular focus on virus-like particles (VLPs), which mimic authentic virus structures but do not contain infectious genetic material.

8.
Viruses ; 13(5)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064959

RESUMO

The production of plant helical virus-like particles (VLPs) via plant-based expression has been problematic with previous studies suggesting that an RNA scaffold may be necessary for their efficient production. To examine this, we compared the accumulation of VLPs from two potexviruses, papaya mosaic virus and alternanthera mosaic virus (AltMV), when the coat proteins were expressed from a replicating potato virus X- based vector (pEff) and a non-replicating vector (pEAQ-HT). Significantly greater quantities of VLPs could be purified when pEff was used. The pEff system was also very efficient at producing VLPs of helical viruses from different virus families. Examination of the RNA content of AltMV and tobacco mosaic virus VLPs produced from pEff revealed the presence of vector-derived RNA sequences, suggesting that the replicating RNA acts as a scaffold for VLP assembly. Cryo-EM analysis of the AltMV VLPs showed they had a structure very similar to that of authentic potexvirus particles. Thus, we conclude that vectors generating replicating forms of RNA, such as pEff, are very efficient for producing helical VLPs.


Assuntos
Vetores Genéticos/genética , Vírus de Plantas/genética , Transdução Genética , Replicação Viral , Capsídeo/ultraestrutura , Vetores Genéticos/administração & dosagem , Vírus de Plantas/isolamento & purificação , Vírus de Plantas/ultraestrutura , Plantas/virologia , /virologia
9.
Life (Basel) ; 11(1)2021 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-33477348

RESUMO

The core antigen of hepatitis B virus (HBcAg) is capable of self-assembly into virus-like particles (VLPs) when expressed in a number of heterologous systems. Such VLPs are potential carriers of foreign antigenic sequences for vaccine design. In this study, we evaluated the production of chimeric HBcAg VLPs presenting a foreign epitope on their surface, the 551-607 amino acids (aa) immunological epitope of the ORF2 capsid protein of hepatitis E virus. A chimeric construct was made by the insertion of 56 aa into the immunodominant loop of the HBcAg. The sequences encoding the chimera were inserted into the pEAQ-HT vector and infiltrated into Nicotiana benthamiana leaves. The plant-expressed chimeric HBcHEV ORF2 551-607 protein was recognized by an anti-HBcAg mAb and anti-HEV IgG positive swine serum. Electron microscopy showed that plant-produced chimeric protein spontaneously assembled into "knobbly" ~34 nm diameter VLPs. This study shows that HBcAg is a promising carrier platform for the neutralizing epitopes of hepatitis E virus (HEV) and the chimeric HBcAg/HEV VLPs could be a candidate for a bivalent vaccine.

10.
Plant Biotechnol J ; 19(4): 745-756, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33099859

RESUMO

Dengue virus (DENV) is an emerging threat causing an estimated 390 million infections per year. Dengvaxia, the only licensed vaccine, may not be adequately safe in young and seronegative patients; hence, development of a safer, more effective vaccine is of great public health interest. Virus-like particles (VLPs) are a safe and very efficient vaccine strategy, and DENV VLPs have been produced in various expression systems. Here, we describe the production of DENV VLPs in Nicotiana benthamiana using transient expression. The co-expression of DENV structural proteins (SP) and a truncated version of the non-structural proteins (NSPs), lacking NS5 that contains the RNA-dependent RNA polymerase, led to the assembly of DENV VLPs in plants. These VLPs were comparable in appearance and size to VLPs produced in mammalian cells. Contrary to data from other expression systems, expression of the protein complex prM-E was not successful, and strategies used in other expression systems to improve the VLP yield did not result in increased yields in plants but, rather, increased purification difficulties. Immunogenicity assays in BALB/c mice revealed that plant-made DENV1-SP + NSP VLPs led to a higher antibody response in mice compared with DENV-E domain III displayed inside bluetongue virus core-like particles and a DENV-E domain III subunit. These results are consistent with the idea that VLPs could be the optimal approach to creating candidate vaccines against enveloped viruses.


Assuntos
Vacinas contra Dengue , Imunidade Humoral , Vacinas de Partículas Semelhantes a Vírus , Proteínas Virais/imunologia , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Vírus da Dengue/genética , Camundongos , Camundongos Endogâmicos BALB C , Vacinas de Partículas Semelhantes a Vírus/genética
11.
Sci Rep ; 10(1): 17095, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33051543

RESUMO

Virus-like particles (VLPs) can be used as nano-carriers and antigen-display systems in vaccine development and therapeutic applications. Conjugation of peptides or whole proteins to VLPs can be achieved using different methods such as the SpyTag/SpyCatcher system. Here we investigate the conjugation of tandem Hepatitis B core (tHBcAg) VLPs and the model antigen GFP in vivo in Nicotiana benthamiana. We show that tHBcAg VLPs could be successfully conjugated with GFP in the cytosol and ER without altering VLP formation or GFP fluorescence. Conjugation in the cytosol was more efficient when SpyCatcher was displayed on tHBcAg VLPs instead of being fused to GFP. This effect was even more obvious in the ER, showing that it is optimal to display SpyCatcher on the tHBcAg VLPs and SpyTag on the binding partner. To test transferability of the GFP results to other antigens, we successfully conjugated tHBcAg VLPs to the HIV capsid protein P24 in the cytosol. This work presents an efficient strategy which can lead to time and cost saving post-translational, covalent conjugation of recombinant proteins in plants.


Assuntos
Antígenos do Núcleo do Vírus da Hepatite B/metabolismo , Proteínas Recombinantes , Vacinas de Partículas Semelhantes a Vírus/metabolismo , Proteínas de Fluorescência Verde , Proteína do Núcleo p24 do HIV/metabolismo , Peptídeos , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Engenharia de Proteínas , /metabolismo
12.
Plant Biotechnol J ; 18(10): 2109-2117, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32096288

RESUMO

Plant molecular farming (PMF) is rapidly gaining traction as a viable alternative to the currently accepted paradigm of producing biologics. While the platform is potentially cheaper and more scalable than conventional manufacturing systems, expression yields and appropriate post-translational modifications along the plant secretory pathway remain a challenge for certain proteins. Viral fusion glycoproteins in particular are often expressed at low yields in plants and, in some cases, may not be appropriately processed. Recently, however, transiently or stably engineering the host plant has shown promise as a strategy for producing heterologous proteins with more complex maturation requirements. In this study we investigated the co-expression of a suite of human chaperones to improve the production of a human immunodeficiency virus (HIV) type 1 soluble gp140 vaccine candidate in Nicotiana benthamiana plants. The co-expression of calreticulin (CRT) resulted in a dramatic increase in Env expression and ameliorated the endoplasmic reticulum (ER) stress response - as evidenced by lower transcript abundance of representative stress-responsive genes. The co-expression of CRT similarly improved accumulation of glycoproteins from Epstein-Barr virus (EBV), Rift Valley fever virus (RVFV) and chikungunya virus (CHIKV), suggesting that the endogenous chaperone machinery may impose a bottleneck for their production. We subsequently successfully combined the co-expression of human CRT with the transient expression of human furin, to enable the production of an appropriately cleaved HIV gp140 antigen. These transient plant host engineering strategies are a promising approach for the production of high yields of appropriately processed and cleaved viral glycoproteins.

13.
Plant Methods ; 15: 108, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31548848

RESUMO

BACKGROUND: The growing field of plant molecular farming relies on expression vectors that allow high yields of recombinant proteins to be produced through transient gene expression. While numerous expression vectors currently exist for this purpose, there are very few examples of systematic efforts to improve upon these. Moreover, the current generation of expression systems makes use of naturally-occurring regulatory elements, typically selected from plant viruses, to maximise yields. This study aims to use rational design to generate synthetic sequences that can rival existing ones. RESULTS: In this work, we present the rational design of novel synthetic 5' and 3' untranslated regions (UTRs) which can be used in various combinations to modulate accumulation levels of transiently-expressed recombinant proteins. Using the pEAQ-HT expression vector as a point of comparison, we show that pre-existing expression systems can be improved by the deployment of rationally designed synthetic UTRs. Notably, we show that a suite of short, synthetic 5'UTRs behave as expression enhancers that outperform the HT 5'UTR present in the CPMV-HT expression system. Furthermore, we confirm the critical role played by the 3'UTR of cowpea mosaic virus RNA-2 in the performance of the CPMV-HT system. Finally, we use the knowledge obtained from these results to develop novel expression vectors (named pHRE and pHREAC) that equal or outperform pEAQ-HT in terms of recombinant protein yield. These new vectors are also domesticated for the use of certain Type IIS restriction enzymes, which allows for quicker cloning and straightforward assessment of different combinations of UTRs. CONCLUSIONS: We have shown that it is possible to rationally design a suite of expression modulators in the form of synthetic UTRs. We have created novel expression vectors that allow very high levels of recombinant protein expression in a transient expression context. This will have important consequences for future efforts to develop ever-better plant transient overexpression vectors for research or industrial applications.

14.
Front Plant Sci ; 10: 455, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31057572

RESUMO

Dengue fever is currently ranked as the top emerging tropical disease, driven by increased global travel, urbanization, and poor hygiene conditions as well as global warming effects which facilitate the spread of Aedes mosquitoes beyond their current distribution. Today, more than 100 countries are affected most of which are tropical Asian and Latin American nations with limited access to medical care. Hence, the development of a dengue vaccine that is dually cost-effective and able to confer a comprehensive protection is ultimately needed. In this study, a consensus sequence of the antigenic dengue viral glycoprotein domain III (cEDIII) was used aiming to provide comprehensive coverage against all four circulating dengue viral serotypes and potential clade replacement event. Utilizing hepatitis B tandem core technology, the cEDIII sequence was inserted into the immunodominant c/e1 loop region so that it could be displayed on the spike structures of assembled particles. The tandem core particles displaying cEDIII epitopes (tHBcAg-cEDIII) were successfully produced in Nicotiana benthamiana via Agrobacterium-mediated transient expression strategy to give a protein of ∼54 kDa, detected in both soluble and insoluble fractions of plant extracts. The assembled tHBcAg-cEDIII virus-like particles (VLPs) were also visualized from transmission electron microscopy. These VLPs had diameters that range from 32 to 35 nm, presenting an apparent size increment as compared to tHBcAg control particles without cEDIII display (namely tEL). Mice immunized with tHBcAg-cEDIII VLPs showed a positive seroconversion to cEDIII antigen, thereby signifying that the assembled tHBcAg-cEDIII VLPs have successfully displayed cEDIII antigen to the immune system. If it is proven to be successful, tHBcAg-cEDIII has the potential to be developed as a cost-effective vaccine candidate that confers a simultaneous protection against all four infecting dengue viral serotypes.

15.
J Virol ; 93(9)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30814279

RESUMO

Satellite tobacco necrosis virus 1 (STNV-1) is a model system for in vitro RNA encapsidation studies (N. Patel, E. C. Dykeman, R. H. A. Coutts, G. P. Lomonossoff, et al., Proc Natl Acad Sci U S A 112:2227-2232, 2015, https://doi.org/10.1073/pnas.1420812112; N. Patel, E. Wroblewski, G. Leonov, S. E. V. Phillips, et al., Proc Natl Acad Sci U S A 114:12255-12260, 2017, https://doi.org/10.1073/pnas.1706951114), leading to the identification of degenerate packaging signals (PSs) proposed to be involved in the recognition of its genome by the capsid protein (CP). The aim of the present work was to investigate whether these putative PSs can confer selective packaging of STNV-1 RNA in vivo and to assess the prospects of using decoy RNAs in antiviral therapy. We have developed an in planta packaging assay based on the transient expression of STNV-1 CP and have assessed the ability of the resulting virus-like particles (VLPs) to encapsidate mutant STNV-1 RNAs expected to have different encapsidation potential based on in vitro studies. The results revealed that >90% of the encapsidated RNAs are host derived, although there is some selectivity of packaging for STNV-1 RNA and certain host RNAs. Comparison of the packaging efficiencies of mutant STNV-1 RNAs showed that they are encapsidated mainly according to their abundance within the cells, rather than the presence or absence of the putative PSs previously identified from in vitro studies. In contrast, subsequent infection experiments demonstrated that host RNAs represent only <1% of virion content. Although selective encapsidation of certain host RNAs was noted, no direct correlation could be made between this preference and the presence of potential PSs in the host RNA sequences. Overall, the data illustrate that the differences in RNA packaging efficiency identified through in vitro studies are insufficient to explain the specific packaging of STNV-1 RNA.IMPORTANCE Viruses preferentially encapsidate their own genomic RNA, sometimes as a result of the presence of clearly defined packaging signals (PSs) in their genome sequence. Recently, a novel form of short degenerate PSs has been proposed (N. Patel, E. C. Dykeman, R. H. A. Coutts, G. P. Lomonossoff, et al., Proc Natl Acad Sci U S A 112:2227-2232, 2015, https://doi.org/10.1073/pnas.1420812112; N. Patel, E. Wroblewski, G. Leonov, S. E. V. Phillips, et al., Proc Natl Acad Sci U S A 114:12255-12260, 2017, https://doi.org/10.1073/pnas.1706951114) using satellite tobacco necrosis virus 1 (STNV-1) as a model system for in vitro studies. It has been suggested that competing with these putative PSs may constitute a novel therapeutic approach against pathogenic single-stranded RNA viruses. Our work demonstrates that the previously identified PSs have no discernible significance for the selective packaging of STNV-1 in vivo in the presence and absence of competition or replication: viral sequences are encapsidated mostly on the basis of their abundance within the cell, while encapsidation of host RNAs also occurs. Nevertheless, the putative PSs identified in STNV-1 RNA may still have applications in bionanotechnology, such as the in vitro selective packaging of RNA molecules.


Assuntos
Regiões 5' não Traduzidas , Genoma Viral , Mutação , RNA Viral , Vírus Satélite da Necrose do Tabaco , Montagem de Vírus , RNA Viral/química , RNA Viral/genética , RNA Viral/metabolismo , /virologia , Vírus Satélite da Necrose do Tabaco/química , Vírus Satélite da Necrose do Tabaco/genética , Vírus Satélite da Necrose do Tabaco/metabolismo
16.
J Virol ; 93(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30355698

RESUMO

To elucidate the linkage between replication and encapsidation in Picornavirales, we have taken advantage of the bipartite nature of a plant-infecting member of this order, cowpea mosaic virus (CPMV), to decouple the two processes. RNA-free virus-like particles (empty virus-like particles [eVLPs]) can be generated by transiently coexpressing the RNA-2-encoded coat protein precursor (VP60) with the RNA-1-encoded 24,000-molecular-weight (24K) protease, in the absence of the replication machinery (K. Saunders, F. Sainsbury, and G. P. Lomonossoff, Virology 393:329-337, 2009, https://doi.org/10.1016/j.virol.2009.08.023). We have made use of the ability to produce assembled capsids of CPMV in the absence of replication to examine the putative linkage between RNA replication and packaging in the Picornavirales We have created a series of mutant RNA-1 and RNA-2 molecules and have assessed the effects of the mutations on both the replication and packaging of the viral RNAs. We demonstrate that mutations that affect replication have a concomitant impact on encapsidation and that RNA-1-mediated replication is required for encapsidation of both RNA-1 and RNA-2. This close coupling between replication and encapsidation provides a means for the specific packaging of viral RNAs. Moreover, we demonstrate that this feature of CPMV can be used to specifically encapsidate custom RNA by placing a sequence of choice between the RNA-2 sequences required for replication.IMPORTANCE The mechanism whereby members of the order Picornavirales specifically package their genomic RNAs is poorly understood. Research with monopartite members of the order, such as poliovirus, indicated that packaging is linked to replication, although the presence of "packaging signals" along the length of the viral RNA has also been suggested. Thanks to the bipartite nature of the CPMV genome, which allows the manipulation of RNA-1 without modifying RNA-2, we show here that this specificity is due to a functional link between the two processes of viral replication and encapsidation. This has important implications for our understanding of the fundamental molecular biology of Picornavirales and opens the door to novel research and therapeutic applications in the field of custom RNA packaging and delivery technologies.


Assuntos
Capsídeo/metabolismo , Comovirus/fisiologia , RNA Viral/genética , Proteínas do Capsídeo/genética , Mutação , Montagem de Vírus , Replicação Viral
17.
Methods Mol Biol ; 1776: 97-123, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29869237

RESUMO

The hepatitis B virus (HBV) core protein (HBc) has formed the building block for virus-like particle (VLP) production for more than 30 years. The ease of production of the protein, the robust ability of the core monomers to dimerize and assemble into intact core particles, and the strong immune responses they elicit when presenting antigenic epitopes all demonstrate its promise for vaccine development (reviewed in Pumpens and Grens (Intervirology 44: 98-114, 2001)). HBc has been modified in a number of ways in attempts to expand its potential as a novel vaccine platform. The HBc protein is predominantly α-helical in structure and folds to form an L-shaped molecule. The structural subunit of the HBc particle is a dimer of monomeric HBc proteins which together form an inverted T-shaped structure. In the assembled HBc particle the four-helix bundle formed at each dimer interface appears at the surface as a prominent "spike." The tips of the "spikes" are the preferred sites for the insertion of foreign sequences for vaccine purposes as they are the most highly exposed regions of the assembled particles. In the tandem-core modification two copies of the HBc protein are covalently linked by a flexible amino acid sequence which allows the fused dimer to fold correctly and assemble into HBc particles. The advantage of the modified structure is that the assembly of the dimeric subunits is defined and not formed by random association. This facilitates the introduction of single, larger sequences at the tip of each surface "spike," thus overcoming the conformational clashes contingent on insertion of large structures into monomeric HBc proteins.Differences in inserted sequences influence the assembly characteristics of the modified proteins, and it is important to optimize the design of each novel construct to maximize efficiency of assembly into regular VLPs. In addition to optimization of the construct, the expression system used can also influence the ability of recombinant structures to assemble into regular isometric particles. Here, we describe the production of recombinant tandem-core particles in bacterial, yeast and plant expression systems.


Assuntos
Antígenos do Núcleo do Vírus da Hepatite B/genética , Vírus da Hepatite B/genética , Proteínas Recombinantes de Fusão/genética , Vacinas de Partículas Semelhantes a Vírus/genética , Sequência de Aminoácidos , Bactérias/virologia , Epitopos/genética , Pichia/genética , Pichia/virologia , Plantas/virologia , Vacinas Virais/genética , Leveduras/virologia
18.
Front Plant Sci ; 8: 247, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28293244

RESUMO

Agroinfiltration of plant leaves with binary vectors carrying a gene of interest within a plant viral vector is a rapid and efficient method for protein production in plants. Previously, we constructed a self-replicating vector, pA7248AMV, based on the genetic elements of potato virus X (PVX), and have shown that this vector can be used for the expression of recombinant proteins in Nicotiana benthamiana. However, this vector is almost 18 kb long and therefore not convenient for genetic manipulation. Furthermore, for efficient expression of the target protein it should be co-agroinfiltrated with an additional binary vector expressing a suppressor of post-transcriptional gene silencing. Here, we improved this expression system by creating the novel pEff vector. Its backbone is about 5 kb shorter than the original vector and it contains an expression cassette for the silencing suppressor, P24, from grapevine leafroll-associated virus-2 alongside PVX genetic elements, thus eliminating the need of co-agroinfiltration. The pEff vector provides green fluorescent protein expression levels of up to 30% of total soluble protein. The novel vector was used for expression of the influenza vaccine candidate, M2eHBc, consisting of an extracellular domain of influenza virus M2 protein (M2e) fused to hepatitis B core antigen. Using the pEff system, M2eHBc was expressed to 5-10% of total soluble protein, several times higher than with original pA7248AMV vector. Plant-produced M2eHBc formed virus-like particles in vivo, as required for its use as a vaccine. The new self-replicating pEff vector could be used for fast and efficient production of various recombinant proteins in plants.

19.
Artigo em Inglês | MEDLINE | ID: mdl-28078770

RESUMO

Nanotechnology is a rapidly expanding field seeking to utilize nano-scale structures for a wide range of applications. Biologically derived nanostructures, such as viruses and virus-like particles (VLPs), provide excellent platforms for functionalization due to their physical and chemical properties. Plant viruses, and VLPs derived from them, have been used extensively in biotechnology. They have been characterized in detail over several decades and have desirable properties including high yields, robustness, and ease of purification. Through modifications to viral surfaces, either interior or exterior, plant-virus-derived nanoparticles have been shown to support a range of functions of potential interest to medicine and nano-technology. In this review we highlight recent and influential achievements in the use of plant virus particles as vehicles for diverse functions: from delivery of anticancer compounds, to targeted bioimaging, vaccine production to nanowire formation. WIREs Nanomed Nanobiotechnol 2017, 9:e1447. doi: 10.1002/wnan.1447 For further resources related to this article, please visit the WIREs website.


Assuntos
Nanomedicina , Nanotecnologia , Vírus de Plantas , Biologia Sintética , Nanopartículas
20.
J Virol Methods ; 225: 59-63, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26384758

RESUMO

The purpose of the protocol is to extract and purify virus-like particles (VLPs) that have been produced in plants. More specifically, this method is well suited to the purification of chimaeric and genetically modified VLPs that do not have native surface properties. This will be the case for VLPs used in antigen display experiments. Such particles are often more fragile than their wild-type infectious virus counterparts, and as such can be damaged or lost during procedures that involve pelleting or precipitating the particles. The method presented here is based on ultracentrifugation and density gradients, with no pelleting or precipitation step. It makes virtually no assumptions about the yield of recombinant VLPs or their properties, which means that this protocol is ideally suited to screening new constructs which are expected to lead to the formation of VLPs. This protocol will allow the researcher to determine whether the construct does indeed form VLPs, and if it does, will reduce the likelihood of those particles being lost or damaged during the purification process. Because of its non-specific nature, this protocol may also be suited to the purification of viruses of unknown nature from leaf material where an infection is suspected.


Assuntos
Plantas/metabolismo , Ultracentrifugação/métodos , Virologia/métodos , Virossomos/isolamento & purificação , Plantas/genética , Virossomos/biossíntese , Virossomos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...